О сайте:
|
What is a Robot?
When you think of a robot, what do you see? A machine that looks a bit like you and me? The reality is that robots can come in many different shapes and sizes. They don't need to look like humans—in fact, most don't. What a robot looks like depends on its purpose. Flying robots might look like helicopters, or have wings like insects or birds. Cleaning robots often look like little vacuums. Robots that are meant to interact with people often have a face, eyes, or a mouth—just like we do! Whether they look like us or not, most robots have three essential ingredients that make them a robot: sensors, actuators, and programs. Together, these ingredients are what make a robot different from other electronics and gadgets you might have around your house, like your computer, your washing machine, or your toaster. Sensors, Actuators, and Programs First, a robot has sensors that allow it to perceive the world. Just like we have eyes to sense light, ears to sense sound, and nerves in our skin that sense if something is touching us, robots have light sensors and cameras so they can “see,” microphones so they can “hear,” and pressure sensors so they can “feel” the things around them. The kinds of sensors that a robot needs depends on what the robot was made for. A robot vacuum cleaner might use a bumper with pressure sensors to understand where a wall is. A flying robot uses a group of sensors called an inertial measurement unit (IMU) to help it stay balanced when it flies. Some of the sensors used by robots are very different from the kinds of sensors used by people. Second, a robot has actuators that allow it to move around. We might use our legs and feet to walk and run, and we might use our hands to pick up an orange and peel it. A robot might use actuators such as motors and wheels to drive places, and finger-like grippers to grab objects and manipulate them or turn them around. Third, a robot needs a program that lets it act on its own based on what it is sensing. This ability to act on one’s own is called autonomy.
What are CNC Machines?
CNC machines are making parts around the world for almost every industry. They create things out of plastics, metals, aluminum, wood and many other hard materials. The word “CNC” stands for Computer Numerical Control, but today everyone calls it CNC. So, how do you define a CNC machine? All automated motion control machines have three primary components – a command function, a drive/motion system, and feedback system. CNC machining is the process of using a computer-driven machine tool to produce a part out of solid material in a different shape. The CNC depends on digital instructions usually made on Computer Aided Manufacturing (CAM) or Computer Aided Design (CAD) software like SolidWorks or MasterCAM. The software writes G-code that the controller on the CNC machine can read. The computer program on the controller interprets the design and moves cutting tools and/or the workpiece on multiple axes to cut the desired shape from the workpiece. The automated cutting process is much faster and more accurate than a manual movement of tools and workpieces which is done with levers and gears on older equipment. Modern-day CNC machines hold multiple tools and make many types of cuts. The number of planes of movement (axes) and the number and types of tools that the machine can access automatically during the machining process determine how complex a workpiece a CNC can make.
How To Use A CNC Machine
CNC machinists must gain skills in both programming and metal-working to make full use of the power of a CNC machine. Technical trade schools and apprenticeship programs often start students on manual lathes to get a feel for how to cut metal. The machinist should be able to envision all three dimensions. Today software makes it easier than ever to make complex parts, because the part shape can be drawn virtually and then tool paths can be suggested by software to make those parts.
Type of Software Commonly Used in the CNC Machining Process
CAD software is the starting point for most CNC projects. There are many different CAD software packages, but all are used to create designs. Popular CAD programs include AutoCAD, SolidWorks, and Rhino3D. There are also cloud-based CAD solutions, and some offer CAM abilities or integrate with CAM software better than others.
Do you know the advantages of CNC turn mill lathe
The CNC turn mill lathe has solved the complex, precise, small batch, and changeable parts processing problems. It is a flexible, high-performance automatic machine tool, especially for single-piece and small-batch parts that account for about 80% of the total machining volume. The processing shows its unique flexibility. In summary, the use of CNC turn mill lathe has the following advantages: Improve the processing accuracy, especially the consistency of the processing of the same batch of parts, so that the product quality is stable; Improve production efficiency, generally about 3-5 times of efficiency, using CNC machining center machine tools can increase productivity by 5-10 times; It can process parts with complex shapes; Reduce labor intensity and improve working conditions; Conducive to the development of production management and integrated automation of mechanical processing.
|